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Outline of today’s talk

e Jens Rasmussen’s professional legacy
— Facts, icons, resources, themes

 Two sample uses of Rasmussen’s ideas
— Sensor Abstraction Hierarchies
— Ecological Interface Design for auditory displays

* The Legacy symposium



Jens Rasmussen
Some career facts

1950: M.Sc. (Hons) electronic engineering from Technical University of
Denmark

1956: Joined the AEC’s Research Establishment at Risg
1962-1987: Head of Electronics Department at Risg National Laboratory.

1987-1992: Research Professor of Cognitive Engineering at Risg National
Laboratory and Technical University of Denmark.

After retirement: Free-lance consultant with WPAFB, EOARD, SRSA, JAERI,
and many other organisations, and guest at many academic institutions.

Two honorary doctorates and multiple professional awards including:
2013: Election to the US National Academy of Engineering.



“Denmark was once at the forefront of nuclear
research and had planned on building nuclear
power plants.

However, in 1985, the Danish parliament passed a
resolution that nuclear power plants would not be
built in the country and there is currently no move
to reverse this situation.”

http://www.world-nuclear.org/info/Country-Profiles/
Countries-A-F/Denmark/



Major themes in Rasmussen’s legacy

Human operator activity results from behaviour-shaping
constraints that we can identify and analyse.

The human operator is a flexible and adaptive element who
“finishes the design” of the technical system she or he
operates.

Human operators cope with complexity by recourse to different
mental models and different modes of mental activity.

Risk management — and safety — require an understanding of
the whole sociotechnical and sociopolitical context of work.

Profoundly functional perspective, supported by strong
graphical modeling approach and powerful analytic templates.



Major influences

* Cognitive systems engineering “a conceptual marketplace”
— Physics
— Control engineering
— History and philosophy of science
— Cognitive science
— Judgment and decision making
— European work psychology
— Ecological psychology
— Sociology
— Organisational and management science
— Engineering design...
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Ecological Interface Design: Theoretical Foundations

Kim J. Vicente, Member, IEEE, and Jens Rasmussen, Senior Member, IEEE

Abstract—A theoretical framework for designing interfaces for
complex human-machine systems is proposed. The framework,
called ecological interface design (EID), is based on the skills,
rules, knowledge taxonomy of cognitive control. The basic goal
of EID is twofold: first, not to force Processing to a higher level
than the demands of the task require, and second, to support
each of the three levels of cognitive control, Thus, an EID
interface should not contribute to the difﬁculty of the task, and
at the same time, it should support the entire range of activities
that operators will be faced with. Three Prescriptive design

principles are suggested to achieve this objective, each directed
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Some key outputs —and a festschrift

HUMAN DETECTION
AND DIAGNOSIS
OF SYSTEM FAILURES

Evind by
Jema

and
Wilkam B. Rouse

Rasmussen &

Rouse [Eds] (1981)

Rasmussen, Pejtersen,
and Goodstein (1994)

__ INFORMATION PBUCESSIIG
HUMAN-MACHINE INTERACTION

AN APPROACH TO ENGINEERING

Rasmussen (1986)

TASKS, ERRORS
AND MENTAL
MODELS

LPGoodstein H B Andersen S EOlsen

Goodstein, Andersen,
and Olsen [Eds] (1988)

JensRasmussen  Inge Svedung

Proactive Risk Management
ina Dynamic Society

Réddningsverket
Swedish Rescue Services Agency

Rasmussen and
Svedung (2001)



Risk management and safety
Recent survey of contribution

Safety Science xoox (2014) xoo-xxx

journal homepage: www.elsevier.com/locate/ssci e

Contents lists available at ScienceDirect =

Safety Science

Reflecting on Jens Rasmussen’s legacy. A strong program for a hard

problem

Jean Christophe Le Coze *

Institut National de l'environnement industriel et des risques, Parc Alata, 60550 Verneuil en Halatte, France
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Jens Rasmussen
Safety

Model

Accident
Socio-technical view

ABSTRACT

Jens Rasmussen has been a very influential thinker for the last quarter of the 20th century in the safety
science field and espedally in major hazard prevention. He shaped many of the basic assumptions regard-
ing safety and accidents which are still held today. One can see that many of his ideas underlie more
recent advances in this field. Indeed, in the first decade of the 21st century, many have been inspired
by his propositions and have pursued their own research agendas by using, extending or critidsing his
ideas. The author of numerous articles, chapters of books and books, Rasmussen had an inspiring
scientific research record spreading over 30 years, expanding across the boundaries of many scientific
disciplines. This article introduces selected elements of Rasmussen's legacy, induding the SRK model,
his theoretical approach of errors, the issue of investigating accidents, his model of migration and the
sodotechnical view. It will be demonstrated that Jens Rasmussen provided key concepts for understand-
ing safety and accidents, many of which are still relevant today. In particular, this article introduces how
some principles such as degree of freedom, self organisation and adaptation, defence in depth fallacy but
also the notion of error as ‘unsuccessful experiment with unacceptable consequences’ still offer powerful
insights into the challenge of predicting and preventing major accidents. It is also argued that they com-
bine into a specific interpretation of the ‘normal accident’ debate, anticipating current trends based on
complexity lenses. Overall, jens Rasmussen defines the contours of what is called ‘a strong program for
a hard problem’.

© 2014 Elsevier Ltd. All rights reserved.




THEME: Human as adaptive system element
that “finishes the design”

“Brownian motion”
metaphor for
adaptation to forces
shaping operational
decisions

Boundary of
functionally
acceptable
behavior

Boundary to
financial
breakdown

Migration toward
least effort

Brownian movements
within space of proper
task performance

Boundary to
unacceptable
work load

Management
pressure toward
efficiency

Boundary o
safe behavior as
defined by safety o
campaigns Space of poss;blhtles;
choice according to

subjective preferences

Figure 6.3. Activity can be characteristic by "Brownian movements" within

the work space, subject to work load and effectiveness gradients.



THEME: Nested behavior-shaping constraints
Cognitive Work Analysis

An approach, and a
framework, for analysis,
modeling, design, and
evaluation.

Analytical templates for
capturing the constraints
at each level (abstraction
decomposition space,
decision ladder, etc.)

Work domain
analysis
in terms of
means-ends Activity analysis
structure Task situation
in work
domain
terms

in decision
a making

Cognitive
resource
analysis

Removing actions alternatives:
Defining behavior shaping con-
straints at progressively narrow
envelopes



Cognitive Work Analysis

Expositions and applications by “the next generations”

Applcations
of (oqitive

Vicente (1999) Bisantz & Burns (2009)

COGNITIVE WORK

ANALYSIS

Jenkins,
Stanton,
Salmon &
Walker (2009)

Cognitiv.e‘

Work Analysis:'
Coping with-
Complexity

Daniel P. Jenkins
Neville A. Stanton
Paul M. Salmon
Guy H. Walker

The Foundations & Pragmatics
of Cognitive Work Analysis

A Systematic Approach to Design of
Large-Scale Information Systems

orgmasion | 35257 oy

Gavan Lintern
Cognitive Systems Design
www.CognitiveSystemsDesign.net

Copyright © 2009 by Gavan Lintern

Lintern (2013)

WORK DOMAIN
ANALYSIS

CONCEPTS, GUIDELINES, AND CASES

Neelam Naikar

&

Naikar (2013)



THEME: Support different modes of mental activity
Ecological Interface Design

Rasmussen and Lind (1981)
Vicente and Rasmussen (1990; 1992)

Convey veridical model of the system to operators/users

Support skill, rule, and knowledge based behaviour
Show safety boundaries.

GOALS

] KNOWLEDGE - BASED
() Ecological BEHAVIOUR
i SYMBOLS | IDENTI- DECISION
lnte'_'face F'E . - OF —{ PLANNING —
LLI Design AN Task
RULE-BASEO | T
BEHAVIOUR r_
_> ASSOCIA- STORED
Iinterface SIGNS | RECOG- TION RULES
Design f NITION STATE/ FOR
Subtie Scionco, EXAct A_.r_1 TASK TASKS
ski-sase0 | | T T T == -
BERMVIOLR AUTOMA:’ED
FEATURE SIGN
Burns & FORMATION oS SENSORI- MOTOR
) ] ] PATIERNS
Hajdukiewicz T T T T T T l l
(2004) SENSORY INPUT SIGNALS ACTIONS.

Bennett & Flach (2012)



THEME: Risk and safety emerge from dynamics
of sociotechnical/sociopolitical systems

JensRasmussen  Inge Svedung

Proactive Risk Management
ina Dynamic Society

Rasmussen and
Svedung (2001)

Research
Discipline

Political Science:

Law; Economics;

Sociology

Economics;

Decision Theory;

Organizational
Sociology

Industrial
Engineering;
Management &
Organization

Psychology:
Human factors;
Human-Machine
Interaction

Mechanical,
Chemical,
and Electrical
Engineering

Government
Public Judg- .
S B -@— Safety reviews,
Opinion ment Accident
Analyses
|
I
ws Regulators,
Associations
Judg- ¢ Incident
ment Relpon:s
Regulations Company

\

Judg- g Operations
ment Reviews

C v Management
ompany
Policy

Logs &
Judg- €—
mtlfnt onk Reports
v ‘ Staff
Plans

Judg—q_ Observations,
ment data

i ’ Work
Action

Hazardous process

Environmental
Stressors

Changing political
climate and
public awareness

4'!-------------

Changing market
conditions
and financial
pressure

4"-------------|

Changing
competency
and levels
of education

A

Fast pace of
technological
change

Figure 1. The socio-technical system involved in risk management.

Rasmussen (1997)



Risk and safety emerge from dynamics of
sociotechnical/sociopolitical systems

1. Govnm. policy General road
& budgeting buidng National A . M
requirements
National ":.,?g;n CCI a pS
policy
2. Regulatory — TDG" _Foad Desgn
i1 on 7
bodies and reguiations reyuhtb':l regulations dzons
associations Ll e ——
Resources
3. Local area govnm. & daffing || Budget |
planing & budgeting v
Road Road man-
planing tenance
effective ? ve?
No | Yes
o -
4. Company 4[] by ed [T [SeE
planning Trampant | | practice Yy v
scedues Design of
I C&Zompaitionl S‘Te? cago nk
priorities No |l Yes Cost effec- ve?
| I tweness No
s Daxms L
i ic y goods on
5. Physical | .“nsiql wélher& bad road |
processes [Growia }—»| " rac I??&%ﬂﬂ
and actor s =
- oo vers
activities Y planning
Income
Ofher truck critera
blocks road Critical Event: Tankrupture,
bt Hathes n spill to water
Speed dangeros cargo| |road side res envoir
\ too high &
6. Equipment & y Namow :j
i Dificult road path
surroundings topography

:I Boldern
road side

Figure 5. A map showing the results of the analysis of a traffic accident involving oil-spill to a

drinking water supply.
Rasmussen (1997) Rasmussen and Svedung (2001)



EXAMPLE: Cognitive Work Analysis

Reising (1999)

. , . Reising & Sanderson (2002a; 2002b; 2004)
Using Rasmussen’s Abstraction

Hierarchy to determine the sensor Futons Provde a consian
urpose ou X

requirements for an interpretable m

and trustworthy visual interface

Do not have overflow
at the vat

Priorities/Values Mvat <= M yat max
Simple example; later example
with pasteurisation plant. P ncions [
IFT; |
L
4
I Object-related Co:;:onmm rn:;uj
Processes I——
Cascade Flow BFT; |
control loop A——
/ Physical Objects Valve

FIGURE 8. The sensor-annotated AH for the reservoir sub-system in Figure 7, showing the “location” of

sensors at the Physical Object level, and the propagation of information from those sensors up through the

AH. Black boxes show good information and dark gray boxes correspond to information that is normally
/ derived. White boxes represent information that, if needed, must be derived by other means.

Human operator information needs should drive the
design of the sensor instrumentation (not vice-versa)



Provide a constant
vol. flow rate at
o .

Priorities/Values [My -y ] <= Mg<= [My+y]
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Functional
Purpose

Do not have overflow
at the vat

rd
Purpose-Related Dampen fuctuating vol. flowe ’, - Supply current vat
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O
~
-~
Object-related Hold a ;:: ';dr of ™| Transport fifid
Processes o
O
-
=
-~ -
Physical Objects Vat . 1 Pipe input PipY output Valve
-~
-

2. Add the needed sensor and anomaly .cuesvanes
is easier to see (level reading wrong?)
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1. With faulty sensor, display gives
misleading indications (valve reading

stuck?)

Provide a constant Do not have overflow
vol. flow rate at at the vat
[My -y ] <= Mg<= [My+y] 0 Mvat <= M yat max
0
Dampen fluctuating vol. flow Su! Supply current vat
rate of input t pipe [~ subsystem
O

Hold a rese of Control the jnput

fuid Transport flui vol. fiow fate

Pipe
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EXAMPLE: Ecological Interface Design
...in the auditory modality

Watson and Sanderson (2004; 2007)
Sanderson et al. (2008)

What information is needed to meet priorities and values?

What aspects of monitoring should be skill, rule, or
knowledge-based?

How to increase sensitivity to approach to boundaries, but
not burden user’s attention with continual monitoring?

Example from neonatal pulse oximetry monitoring.
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